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We consider the problem of nonlinear oscillatory convection in a horizontal mushy
layer rotating about a vertical axis. Under a near-eutectic approximation and the
limit of large far-field temperature, we determine the stable and unstable oscillatory
solutions of the weakly nonlinear problem by using perturbation and stability analyses.
It was found that depending on the values of the parameters, supercritical simple
travelling modes of convection in the form of hexagons, squares, rectangles or rolls
can become stable and preferred, provided the value of the rotation parameter τ is
not too small and is below some value, which can depend on the other parameter
values. Each supercritical form of the oscillatory convection becomes subcritical as τ

increases beyond some value, and each subcritical form of the oscillatory convection
is unstable. In contrast to the non-rotating case, qualitative properties of the left-
travelling modes of convection are different from those of the right-travelling modes,
and such qualitative difference is found to be due to the interactions between the
local solid fraction and the Coriolis term in the momentum-Darcy equation.

1. Introduction
Riahi (2003) extended the steady problem of convection in rotating mushy layers

treated by Guba (2001) by following Anderson & Worster (1995) in assuming a much
wider range ε � δ for the amplitude of convection, taking into account the interactions
between the local solid fraction and the convection associated with the Coriolis term
in the momentum-Darcy equation and carrying out stability analysis of the finite-
amplitude steady solutions. It was found, in particular that over most of the range of
the parameter values, subcritical down-hexagons with down-flow at the cell centres
and up-flow at the cell boundaries can be preferred over up-hexagons, where flow is
upward at the cell centres and downward at the cell boundaries.

Riahi (2002) extended the linear oscillatory problem of convection in mushy layers
and in the absence of rotation due to Anderson & Worster (1996) by employing weakly
nonlinear and stability analyses to determine the stable finite-amplitude oscillatory
solutions. He found, in particular, that depending on the values of the parameters,
only supercritical simple travelling modes of convection in the form of either right-
travelling rolls (where the phase velocity of the rolls is in the direction of the com-
ponent of the position vector along the wavenumber vector) or left-travelling rolls,
(where the phase velocity of the rolls is in the direction opposite to that of the
component of the position vector along the wavenumber vector) or supercritical stand-
ing rolls can be stable. The weakly nonlinear and stability properties of the right-
travelling mode were found to be the same as those of the left-travelling mode. The
author is grateful to the editor and two referees for pointing out an error due to the
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inadequate number of decimals being taken for π in the computation, which existed
in Riahi (2002) as well as in an earlier draft version of this paper, which was then
eliminated in the later version of the present paper. The main qualitative results stated
in Riahi (2002) were not affected by that error.

The present study, which can also be considered as a rotating extension of the work
due to Riahi (2002), leads to significant results that were found to be sharply different
from the corresponding ones in Riahi (2002). In particular, we found that over a
significant range of the parameter values, three-dimensional simple travelling modes
of convection in the form of hexagons, squares and rectangles can be preferred over
the oscillatory rolls, provided the rotation rate is not too small, and the qualitative
features of the right-travelling modes differ, in general, from those of the left-travelling
modes for the same types of flow pattern.

The only other studies on weakly nonlinear oscillatory convection in a rotating
mushy layer known to the author are those by Guba & Boda (1998) and Govender &
Vadasz (2002). Guba & Boda (1998) studied the effect of uniform rotation on linear
problem for convection in a mushy layer, but their investigation did not take into
account the interaction between the local solid fraction and the flow associated with
the Coriolis term. These authors determined the critical value of the Rayleigh number
at the onset of convection and the frequency of the oscillatory mode as functions of
each of the parameters under the condition of given values of all the other parameters
of the problem. Their main result was that depending on the values of the parameters,
the oscillatory mode can be more critical than the stationary mode or vice versa.
Govender & Vadasz (2002) considered the problem of two-dimensional oscillatory
convection in a rotating mushy layer and employed a near-eutectic approximation and
the limit of large far-field temperature. The momentum-Darcy equation was extended
only to include the time derivative and the Coriolis terms. The authors did not take
into account the presence of the interactions between the local solid fraction and the
flow associated with the Coriolis term, and their weakly nonlinear analysis was based
on the zero-order limit of the mushy-layer thickness. The main result of the study
was that two-dimensional oscillatory flow was supercritical.

It should be noted that the linear part of the present investigation can be considered
an extension of the linear model treated by Guba & Boda (1998) in the sense that
we fully took into account the interaction between the local solid fraction and the
Coriolis term.

With regard to the motivation of the present study of the effect of rotation in the
context of oscillatory convection in mushy layers, it should be noted that it has been
of interest to investigate whether an external constraint of rotation can enhance
or otherwise modify the oscillatory mode of convection discovered by Anderson &
Worster (1996). As these authors noted, an oscillatory mode may be the most critical
one in some cases, and our investigation of the effect of rotation on nonlinear
oscillatory convection in mushy layers was aimed at further understanding how
rotation can affect the oscillatory flow features in the mushy layers and, in particular,
reduce the flow tendency for chimney formation, which is important for production
of higher-quality crystals in industrial processes.

2. Formulation
We consider a binary alloy melt that is cooled from below and is solidified at a con-

stant speed V0. Following Amberg & Homsy (1993) and Anderson & Worster (1995),
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we consider a mushy layer of thickness d adjacent and above the solidification front
to be physically isolated from the overlying liquid and the underlying solid zones.
The overlying liquid is assumed to have a composition C0 >Ce and temperature
T∞ >TL(C0) far above the mushy layer, where Ce is the eutectic composition, TL(C̃) is
the liquidus temperature of the alloy and C̃ is the composition. It is then assumed that
the horizontal mushy layer, which is treated as a porous layer obeying Darcy’s law, is
bounded from above and below by rigid and isothermal boundaries. The solidifying
system is assumed to be rotating at a constant speed Ω in the vertical direction
anti-parallel to the gravity vector. We consider the solidifying system in a moving
frame of reference ox̃ỹz̃, whose origin lies on the solidification front, translating at
the speed V0 with the solidification front in the positive z̃-direction and rotating with
the speed Ω along the z̃-axis.

Next, we consider the non-dimensional form of the equations for momentum-Darcy,
continuity, heat and solute for the flow of melt in the mushy layer in the already
described moving frame. These equations, as well as the corresponding boundary
conditions, are given below:

K(φ̃)ũ = −∇P̃ − R̃θ̃ z + τ ũ × z/(1 − φ̃), (1a)

∇ · ũ = 0, (1b)

(∂/∂̃t − ∂/∂z̃)(θ̃ − St φ̃) + ũ · ∇θ̃ = ∇2θ̃ , (1c)

(∂/∂t̃ − ∂/∂z̃)[(1 − φ̃)θ̃ + Crφ̃] + ũ · ∇θ̃ = 0, (1d)

θ̃ + 1 = w̃ = 0 at z̃ = 0, (1e)

θ̃ = w̃ = φ̃ = 0 at z̃ = δ, (1f)

where ũ = ũx + ṽ y + w̃z is the volume flux vector per unit area, ũ and ṽ are the
horizontal components of ũ along the horizontal x̃- and ỹ-directions, respectively,
x and y are unit vectors along the positive x̃- and ỹ-directions, w̃ is the vertical
component of ũ along the z̃-direction, z is a unit vector along the positive z̃-direction,
P̃ is the modified pressure, θ̃ =[T̃ −TL(C0)]/�T = (C̃ − C0)/�C is the non-dimensional
temperature, t̃ is the time variable, φ̃ is the local solid fraction, R = β�Cg

∏
(0)/(V0ν)

is the Rayleigh number,
∏

(0) is the reference value at φ̃ = 0 of the permeability
∏

(φ̃)
of the porous medium, ν is the kinematic viscosity, g is acceleration due to gravity,
K(φ̃) ≡

∏
(0)/

∏
(φ̃), St = L/(CL�T ) is the Stefan number, CL is the specific heat per

unit volume, L is the latent heat of solidification per unit volume, Cr = (Cs −C0)/�C is
a concentration ratio, Cs is the composition of the solid-phase forming the dendrites,
τ = 2Ω

∏
(0)/ν is the Coriolis parameter, which is the square root of a Taylor number

and δ = dV 0/k is a growth Péclet number representing the dimensionless depth of the
mushy layer. It should be noted that the interaction between the local solid fraction
and the Coriolis term referred to in the previous section, is the deviation of the last
term in the right-hand side of equation (1a) from τu × z. Equation (1d) is based on
the limit of sufficiently large value of the Lewis number k/ks , where ks is the solute
diffusivity.

Following earlier work (Amberg & Homsy 1993; Anderson & Worster 1995), we
assume the following rescaling in the limit of sufficiently small δ:

Cr = C/δ, St = S/δ, ε � δ � 1, (x̃, ỹ, z̃, t̃) = (x, y, z, tδ)δ, R2 = δR̃, (2a)

(θ̃ , φ̃, ũ, P̃ ) = [θB(z) + εθ, φB(z) + εφ, 0 + (εR/δ)u, RP B(z) + RεP ], (2b)

where C and S are order-one quantities as δ → 0, and the quantities with subscript
‘B ’ are those for the basic motionless state. The small deviation of each dependent
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variable from its basic quantity is measured by perturbation amplitude ε and can
vary, in general, with respect to x, y, z and t variables. The assumption of St → ∞
in the limit δ → 0 used here is relevant in the present study, and, in fact, it allowed
Anderson & Worster (1996) to detect an oscillatory instability from their linear model.

The rescaling (2a)–(2b) is then used in the governing system (1a)–(1f ). This system
admits a motionless basic state, which is steady and horizontally uniform. The basic
state solution is already known (Anderson & Worster 1995) and will not be repeated
here. However, as was explained in Riahi (2002), a new parameter G ≡ 1 + S/C is
found to be suitable for use in the basic state solution instead of S. Since φB is found
to be small and of order δ, then φ̃ is expected to be small and the following expansion
for K(φ̃) is implemented in the governing system:

K(φ̃) = 1 + K1φ̃ + K2φ̃
2 + · · · , (3)

where K1 and K2 are constants.
For the analysis to be presented in the next section, it was found convenient to use

the representation u = ∇ × ∇ × zV +∇ × zψ for the divergent-free vector field u, where
V and ψ are the poloidal and toroidal functions for u, respectively (Chandrasekhar
1961). Taking the vertical components of the curl and double curl of the Darcy-
momentum equation and using the continuity equation, we find the system for V , ψ, θ

and φ, which is of the form given in Riahi (2003) and, thus, will not be repeated here.

3. Analysis
Here we seek oscillatory solutions of the already described nonlinear system by

applying a weakly nonlinear analysis, based on a double-series expansions in powers
of two small parameters δ and ε for the dependent variables, R and the frequency ω of
the oscillatory modes of the type used in Riahi (2002). In the following analyses, the
coefficient of f ≡ (V, ψ, θ, φ, R, ω) in the order εmδn of such double-series expansions
is designated by fmn.

3.1. Linear problem

Considering the system to the lowest order in ε, we find the linear problem. At order
ε0/δ, the system yields ω00 = 0. At order ε0δ0, the same system yields the following
results:

V00 = [(π2 + a2)/(GR00a
2)] sin(πz)

N∑
n=−N

Un, Un ≡ (A+
n W+

n + A−
n W −

n ), (4a)

ψ00 = πτ [(π2 + a2)/(GR00a
2)] cos(πz)

N∑
n=−N

Un, (4b)

θ00 = −sin(πz)

N∑
n=−N

Un, (4c)

φ00 =
{

−(π2 + a2)π/
[
GC

(
π2 − ω2

01

)]} N∑
n=−N

[fn(z)U
+
n + f ∗

n (z)U−
n ],

fn(z) ≡ {(iω01Sn/π) sin(πz) + cos(πz) + exp[iω01Sn(z − 1)]},

U±
n ≡ A±

n W ±
n , W ±

n ≡ exp[i(an · r ± Snωt)],




(4d)

R2
00 = (π2 + a2)(π2 + a2 + π2τ 2)/(a2G), (4e)
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where

Sn ≡ 1 for n > 0 and −1 for n < 0. (4f)

Here i is the pure imaginary number (i =
√

− 1), subscript ‘n’ takes only non-zero
integer values from −N to N , N is a positive integer representing the number of
distinct modes, r is the position vector, and the horizontal wavenumber vectors an

satisfy the properties

an · z = 0, |an| = a, a−n = −an. (5)

The coefficients A+
n and A−

n are constants and satisfy the conditions

N∑
n=−N

(A+
n A+∗

n + A−
n A−∗

n ) = 2, A±∗
n = A±

−n, (6)

where the asterisk indicates the complex conjugate. For left- (right-)travelling-wave
solutions, A−

n = 0(A+
n =0), while for standing-wave solutions A−

n = A+
n (Riahi 2002).

It should be noted that the result (4a)–(4e) in the limit of a single mode agree with
the corresponding ones given in Guba & Boda (1998). Minimizing the expression for
R00 given in (4e), with respect to the wavenumber a, we find

R00c = π[1 + (1 + τ 2)0.5]/
√

G, ac = π(1 + τ 2)0.25. (7)

Here, R00c is the minimum value of R00 achieved at a = ac.
As the results to be discussed in the next section indicate, the magnitude of some

of the presumed order-one coefficients Rnm can become too large for large values of
τ , and so the validity of the present model may become questionable for large values
of τ . Hence, we shall assume that the value of τ can be at most of order unity.
Also, due to the complexity of the present rotating and oscillatory flow investigation,
we consider a simplifying assumption by following Riahi (2002) and focusing on a
limiting case where K1 is small, of order ε, so that we can write K1 = εKc, where Kc

is a constant of order one.
Considering the governing system in the order ε0δ1, eliminating ψ01 and φ01 and

applying the existence condition of the type carried out in Riahi (2002), we find that
the real and imaginary parts of this condition yield

(R01c/R00c) = GtG
[
1/4 + π2(1 + cos ω01)

/(
π2 − ω2

01

)2]
+ π2τ 2

/[
2C

(
π2 + a2

c + π2τ 2
)]

, (8a)

ω01

{
1 + Gt

[(
π2 + a2

c

)/(
π2 − ω2

01

)][
1 − 2π2 sin ω01

/(
ω01π2 − ω3

01

)]}
= 0,

Gt ≡ (G − 1)/(CG2).

}
(8b)

It should be noted from (8b) that ω01 depends on the rotation parameter τ only
through ac, and (8b) is equivalent to the non-rotating case of Anderson & Worster
(1996), where ac = π.

Hence, the critical Rayleigh number Rc for the linear system can be written as

Rc = R00c + δR01c + O(δ2). (9)

3.2. Nonlinear and stability problem

Next, we analyse the nonlinear problem for the oscillatory convection. At order ε/δ,
we find ω10 = 0. Following Riahi (2002) to determine the solvability conditions for
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the system in order ε, we find R10 = 0, which is expected for the oscillatory modes
as explained in Riahi (2002). By the same reasoning, the solvability conditions for
the system at order εδm also yield R1m = ω1m = 0 (m > 0). The solutions to the order
ε-system are then found. These solutions are functions of independent variables
and non-dimensional parameters as well as on Φlp ≡ al · ap/a2 and Ψlp ≡ al × ap/a2

(l, p = −N, . . . , −1, 1, . . . , N).
We now consider the system in order ε2. The solvability conditions for the system in

the order ε2 yield the expression for R20, which together with (6), were used to study
the oscillatory solutions. Similar to the earlier studies (Riahi 2002, 2003), we restrict
our analyses to the regular or semi-regular solutions where (6) yield, for each n

|A+
n |2 = |A−

n |2 = 1/(2N ), |A+
n |2 = 1/N (|A−

n | = 0),

|A−
n |2 = 1/N (|A+

n | = 0), (|A+
n |2, |A−

n |2) = [(0.5 − b), 0.5 + b)]/N,

}
(10)

for standing, left-travelling, right-travelling and general travelling waves, respectively,
where a given value of the parameter b in its appropriate range |b| < 0.5 (Riahi 2002)
provides particular general travelling waves. In later references on a semi-regular
solution in the form of rectangles, an angle γ , which is less than 90◦, is defined to be
the angle between two adjacent wavenumber vectors of any rectangular cell.

To distinguish the physically realizable solution among all the possible oscillatory
solutions, the stability of the finite-amplitude solution is investigated by superposing
on the solutions perturbations of infinitesimal amplitude and with addition of a time
dependence of the form exp(σ t), where σ is the growth rate. Following Riahi (2002,
2003), we obtain the stability system for the disturbances, which was solved by an
expansion similar to that for the finite-amplitude solutions.

The present stability analysis is of the same type as given in Riahi (2003) and, thus,
will not be repeated here. Instead, we briefly state the key aspects and the results of
the analysis. The growth rate to the lowest order in ε of the most critical disturbances
is zero. Similar to the result for R10 presented in the previous subsection, we found
that the solvability conditions for the disturbance system in the order ε yield σ10 = 0.
Application of this procedure to the disturbance systems at orders εδm (m > 0) then
implies that σ1m = 0. Next, the solvability conditions in the order ε2 determine the
expression for σ20.

4. Results and discussion
In this section, the results are presented in terms of the physical parameters S, C,

K2 and τ , even though the analysis was presented more simply in terms of G, Gt , K2

and τ .

4.1. Linear problem

The linear system and its eigenvalue problem, which led to the results (4)–(9), are,
in general, functions of the parameters S, C and τ . Here and hereinafter value of
δ =0.2 is chosen to evaluate Rc and other quantities whose values may depend on δ.
The well-known stabilizing effect of the Coriolis force on convection (Chandrasekhar
1961) can be seen from the expressions for Rc and ac, which can be found from
(7), (8a) and (9). However, ac is unaffected with respect to the variations of S and
C, while Rc depends strongly on the ratio S/C. The results for the frequency ω01

of the oscillatory motion as function of C and for several given values of τ are
presented in figure 1. Just like the non-rotating case (Anderson & Worster 1996;
Riahi 2002), ω01 was found to vary only with respect to C if the ratio S/C is kept
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Figure 1. The frequency ω01 versus C. �, τ = 0; �, 1.0; �, 2.0.
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Figure 2. Rc against S for C = S. �, τ = 0; �, 1.0 �, 2.0.

fixed. It can be concluded from the results presented in this figure that the period of
the oscillatory mode decreases with increasing τ and C. It should be noted that in
most of the results of the analysis presented in this paper, G has the value of 2.0,
which implies S =C. Using the expression for Gt given in (8b), we then find that
Gt = 0.25/C. Hence, an increase in Gt corresponds to a decrease in C (or S) and vice
versa. The results for Rc as a function of S and for several values of τ are presented
in figure 2 for C = S. It can be seen clearly from (7) and (9) that, in general, S and
C are strongly destabilizing and stabilizing, respectively, if these two later parameters
are kept independent of one another. It can be concluded from the results presented
in figure 2 that S is destabilizing for a given τ , while τ is stabilizing for a given S.
The rate of destabilization with respect to S is higher at higher values of τ . Thus, in
general, for the linear system, the effects of increasing τ or C are stabilizing, while the
effect of increasing S is destabilizing. These results are understandable with respect
to the physical interpretation of the parameters τ, S and C since the Coriolis effect
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is known to be stabilizing at the onset of motion for the linear convective systems
(Chandrasekhar 1961), while according to the physical interpretation given in the
non-rotating case (Riahi 2002), the scaled Stefan number S is destabilizing for a given
C, and the scaled compositional ratio C is stabilizing for a given S. When S = C, then
the destabilizing effect of S appears to dominate over the stabilizing effect of C, as
the results shown in the figure 2 indicate.

Note that in the expression (8a) for R01c, the second term on the right-hand side,
which contains the factor (τ 2/C), is due to the interaction between the leading term
in the basic state of the local solid fraction and the Coriolis term in the momentum-
Darcy equation. This interaction term is associated with the basic state solid fraction,
owing to the difference between the local fluid velocity and the local volume flux
of inter-dendritic fluid, as the momentum equation is formulated in terms of Darcy,
rather than the local, velocity. If this interaction term is not taken into account, then
we find that the value of Rc is reduced for non-zero rotation cases. Hence, presence
of such an interaction term is stabilizing in the present oscillatory flow problem as
far as the linear system is concerned, while in the steady case (Riahi 2003), such an
interaction term was found to be destabilizing for the linear system.

4.2. Nonlinear and stability problem

In this paper, an important quantity due to the nonlinear effects is the coefficient
R20. Since R1n =0(n= 0, 1, . . .) in the present problem, the coefficient R20 represents
leading contributions to the change in R required to obtain finite amplitude ε for a
nonlinear solution. In terms of this coefficient, the amplitude of convection is of order

|ε| = [(R − Rc)/R20]
0.5. (11)

Here the sign of R20 determines whether the oscillatory solution exists for values of R

above or below Rc. For supercritical convection, where R > Rc, the amplitude of con-
vection is largest, provided the value of R20 is smallest among all the solutions to the
nonlinear problem. Here, R20 is due to the linear and nonlinear interactions between
the local solid fraction and the Coriolis term in the momentum-Darcy equation, the
nonlinear convective terms in the temperature equation and the nonlinear interactions
between the flow velocity and the non-uniform and nonlinear permeability associated
with the perturbation to the basic state solid fraction.

We calculated the expression for R20 for convection with different plan forms such
as rolls, rectangles, squares and hexagons. In all the cases that were studied, it was
found that for given values of the parameters and for τ 
= 0, the values of R20 for
the right-travelling waves were generally different from the values of R20 for the
left-travelling rolls. This result is in contrast to the corresponding result for the non-
rotating case (Riahi 2002) where for any given parameter values, the value of R20 was
found to be the same for the right-travelling and left-travelling waves. We detected
that such a difference in the R20 values for the left-travelling and right-travelling waves
in the rotating system was due to the interactions between the local solid fraction
and the flow associated with the Coriolis force in the momentum-Darcy equation.
In particular, since according to (4d) the z-dependence of the linear solution for the
right-travelling mode of the local solid fraction is the complex conjugate of that
for the left-travelling mode, the interactions of the solid fraction with the Coriolis
term carries such a difference in the z-dependence behaviour of the left- and right-
travelling modes to the order-ε solutions for the flow velocity and concentration and
subsequently to the solvability condition in the order ε2, which leads to different
values of R20 for these modes. The present results for the oscillatory modes as well as
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Figure 3. R20 against C for left- (solid lines) and right- (dash lines) travelling hexagons.
Here, S = C and K2 = 0. �, τ = 0.001; �, 0.004; �, 0.005.

those for the stationary modes (Riahi 2003) indicate that in the rotating system, the
porosity of the mushy layer affects the amplitude of the finite-amplitude solutions.
In the present oscillatory regime, the amounts affected by the local porosity on the
amplitude of the right-travelling mode differ from that for the left-travelling mode.

The coefficients R20 for oscillatory convection in the form of hexagons (N = 3),
square cells (N = 2, γ =90◦), rectangles (N = 2, γ < 90◦) and rolls (N = 1) were com-
puted for various values of τ, S, C and K2. The main results that are given below
about the variation of R20 with respect to the parameters for each type of oscillatory
mode, were found to be qualitatively the same, regardless of the particular form
of the flow pattern chosen. It was found that, primarily depending on the value of
τ and secondarily depending on the range of values of the other parameters, R20

can be positive or negative and, thus, both supercritical and subcritical oscillatory
solutions can be possible. For sufficiently small values of τ , like τ < 0.001, R20 > 0,
S/C is destabilizing, while K2 is stabilizing, which is consistent with the stabilizing
effect of decreasing the permeability, and the value of R20 is almost the same for
right-travelling and left-travelling modes. Variation of R20 with respect to C for S = C

is non-monotonic for τ 
=0. Such non-monotonic behaviour was found to increase
in intensity with increasing rotational effect. For values of τ that are not too small,
such as τ � 0.001, effects of K2, C and S remain qualitatively the same as in the case
of 0<τ < 0.001, but the value of R20 for the right-travelling mode is now generally
different from the corresponding one for the left-travelling mode. For larger values of τ

such as τ � 0.005, K2 and S/C are again stabilizing and destabilizing, respectively, and
there is an intermediate range in C where R20 < 0, provided S/C or K2 is not too large.
Depending on the range of the parameter values, R20 for either left- or right-travelling
mode of supercritical convection in the form of hexagons, squares, rectangles or rolls,
can have the smallest value among all the solutions that have been determined.

To provide some graphical results for the qualitative nonlinear features shared by
different forms of finite-amplitude solutions, we consider the cases of particular
oscillatory hexagons. Some typical results about the variation of R20 with respect
to C are presented in figure 3 for a left-travelling hexagons (solid lines) and the
corresponding right-travelling hexagons (dash lines) for τ = 0.001, 0.004 and 0.005.
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Figure 4. Solid fraction for right-travelling up-hexagons versus z for C = 0.248, S = C,
τ = 0.07 and K2 = 0. �, �, � and � show, respectively, φ̃(x = 0, y = 0, z, t = 0) at a cell’s
centre, φ̃(x = 1.33, y = 0, z, t = 0) at a cell’s node initially, φ̃(x = 1.33, y = 0, z, t = 0.635) at
the same cell’s node, but at half of the period of oscillation and the basic solid fraction φB .

Here S = C and K2 = 0. It is seen from this figure that C is stabilizing for relatively
larger values of C, and such stabilization is aided by the rotation. If τ is not too
large, then the supercritical regime can be realized in the particular range of values
for C. The supercritical regime can also be realized if C is sufficiently large. The effect
of τ is, in general, destabilizing. The differences between the left- and right-travelling
hexagons can be seen clearly from this figure. These differences can be significant
only for significant values of τ if C is not large, which implies significant values of the
rotation rate for small values of S. Our generated data indicated that K2 is generally
stabilizing, while S/C is generally destabilizing. If the interactions between the local
solid fraction and the Coriolis term are not taken into account, then it was found that
R20 can be positive over a wider range in C, and its value is generally affected by those
interactions. However, K2 is still stabilizing and S/C or τ is still destabilizing. Hence,
those interactions appear to enhance the destabilization effect of S for given S/C.

We also examined the vertical distribution of solid fraction at different locations in
the horizontal direction and in time for the oscillatory hexagons. Some typical results
are presented in figures 4 and 5 for the vertical distribution of the basic state and
total solid fraction at a centre and at a node of a right-travelling up-hexagon (ε > 0)
and a right-travelling down-hexagon (ε < 0) for τ = 0.07. In these calculations δ = 0.2,
C = 0.248, S = C, K2 = 0, and the value |ε| =0.002 is chosen, which is the maximum
value of |ε| beyond which the solid fraction becomes negative and subsequently
physically unrealistic. We have chosen zero values for K2 in these calculations since
φ̃ is found to be much less sensitive with respect to K2 at such a small value
of |ε|. Two cases of a node, corresponding to full and half periods of oscillation
are shown in these figures, which provide significant differences between qualitative
behaviour of the node at two instants in time. It can be seen from the figure 4 that
for the up-hexagonal case and after completing any period of oscillation, there are
greater tendencies for crystal formation at the node near the lower boundary and
melt generation at the centre near the upper boundary; but just completing about
half a period of oscillation, there is a greater tendency for melt formation at the
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Figure 5. Solid fraction for right-travelling down-hexagons versus z for C = 0.248, S = C,
τ = 0.07 and K2 = 0. �, �, � and � show, respectively, φ̃(x = 0, y = 0, z, t = 0) at a cell’s
centre, φ̃(x = 1.33, y = 0, z, t = 0) at a cell’s node initially, φ̃(x = 1.33, y = 0, z, t = 1.0) at
the same cell’s node, but at half of the period of oscillation and the basic solid fraction φB .

node near the lower boundary. However, it can be seen from figure 5 that for the
down-hexagonal case and right after completing any period of oscillation, there are
greater tendencies for crystal formation at the centre near the upper boundary and
chimney formation at the node near the lower boundary; but just completing about
half a period of oscillation, there is a greater tendency for crystal formation at the
node near the lower boundary.

Similar to the stability procedure carried out in Riahi (2003), the growth rate σ20

of the disturbances acting on the finite-amplitude oscillatory solutions was computed
for different integers N and various values of the quantities Φnm (|Φnm| � 1) and Ψnm

(|Ψnm| � 1). If τ is too small, such as τ < 0.004, the stability results are essentially the
same as those for the zero-rotation case (Riahi 2002). If τ is not too small, then the
stability results indicate that only right- or left-travelling supercritical solutions in
the form of either rolls, rectangles, squares or hexagons are stable in a particular
range of values of the parameters, provided the corresponding R20 has the smallest
positive value among those for all the finite-amplitude flow solutions.

5. Conclusion
We investigated the problem of nonlinear oscillatory convection in a rotating

mushy layer during alloy solidification. We analysed the two- and three-dimensional
oscillatory modes of convection in the rotating mushy layer using the model due to
Amberg & Homsy (1993). We performed a weakly nonlinear analysis to determine
the oscillatory solutions admitted by the nonlinear problem and employed stability
analysis to determine the solutions that can be stable with respect to arbitrary three-
dimensional disturbances in different ranges of the parameter values. We found that
for a rotation rate that is not too small, and depending on the range of values
of the other parameters, a simple travelling supercritical solution in the form of
rolls, rectangles, squares, down- or up-hexagons can possibly be stable. Subcritical
oscillatory flow solutions were found to exist, but are unstable based on the present
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theory. The effect of rotation was found to be stabilizing in the linear regime and
mainly destabilizing in the nonlinear regime of the present theory.

A notable result of the present study, which is qualitatively independent of the
type of solution and its pattern and is also shown in the figure 3 as an example,
is the destabilizing effect of rotation in the weakly nonlinear regime and the non-
monotonic dependence of R20 with respect to the variation of C with fixed S/C.
Thus, in order for C to increase, the value of S must be decreased accordingly. The
non-monotonic behaviour of R20 indicates that as C increases, either the destabiliz-
ing effect of the Stefan number or the stabilizing effect of the concentration ratio
dominates, depending on their dominating range of values and the rotational con-
straint tends to enhance such behaviour.

In contrast to the steady-rotating case (Riahi 2003) where subcritical down-
hexagons could be stable, subcritical hexagons were found to be unstable here in
the oscillatory-rotating case, and the qualitative differences between the right- and
left-travelling modes were found to be due to the interactions between the local solid
fraction and the Coriolis term. A notable conclusion for the oscillatory convection
in the rotating mushy-layer systems is that the porosity affects the amplitude of the
preferred flow solutions, and such porosity effect on the right-travelling solution is,
in general, different from that on the left-travelling solution.

The author would like to thank the editor and two referees for pointing out an
error in an earlier version, which was due to an inadequate number of decimals being
used for π in the computation.

REFERENCES

Amberg, G. & Homsy, G. M. 1993 Nonlinear analysis of buoyant convection in binary solidification
with application to channel formation. J. Fluid Mech. 252, 79–98.

Anderson, D. M. & Worster, M. G. 1995 Weakly nonlinear analysis of convection in mushy layers
during the solidification of binary alloys. J. Fluid Mech. 302, 307–331.

Anderson, D. M. & Worster, M. G. 1996 A new oscillatory instability in a mushy layer during
the solidification of binary alloys. J. Fluid Mech. 307, 245–267.

Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Clarendon Press.

Govender, S. & Vadasz, P. 2002 Weak non-linear analysis of moderate Stefan number oscillatory
convection in rotating mushy layers. Transport Porous Media 48, 353–372.

Guba, P. 2001 On the finite-amplitude steady convection in rotating mushy layers. J. Fluid Mech.
437, 337–365.

Guba, P. & Boda, J. 1998 The effect of uniform rotation on convective instability of a mushy layer
during binary alloy solidification. Stud. Geophys. Geod. 42, 289–296.

Riahi, D. N. 2002 On nonlinear convection in mushy layers. Part 1. Oscillatory modes of convection.
J. Fluid Mech. 467, 331–359.

Riahi, D. N. 2003 Nonlinear steady convection in rotating mushy layers. J. Fluid Mech. 485, 279–306.


